Endoform® helps reduce the time, cost and complication of closing diabetic foot ulcers

- Treating DFUs with Endoform® following debridement can lead to 90% wound closure by 12 weeks and complete closure in 24 weeks. ¹
- Using Endoform® as the first-line intervention increased the healing rate and reduced healing time and cost compared with cellular and tissue-based products (CTPs) alone. ²
- Wound management with Endoform® from day one can eliminate the need for CTPs. ³
- Endoform®, along with gentian violet/methylene blue (GV/MB) and hyperbaric oxygen therapy (HBOT) can lead to favourable outcomes in high risk diabetic patients (> Wagner grade 3). ⁴
- Endoform® in combination with negative pressure wound therapy (NPWT) may contribute to limb salvage after surgical intervention in high risk DFUs. ⁵
- Endoform® in combination with NPWT helped to reduce the average wound closure time by 10 days compared to NPWT alone in a clinical study. ⁶
- Endoform® helps advance stalled wounds to closure by optimizing the wound healing environment. ⁷
- Endoform®, in combination with GV/MB, may lead to reduced bioburden and matrix metalloproteinase’s (MMPs) in the wound, as well as patient satisfaction and compliance. ⁸, ⁹
- Endoform® tackles complex wounds (e.g. exposed bone and tendon), providing complete tendon coverage and leading to closure without complications. ³, ¹⁰, ¹¹, ¹²

Endoform® can be used at all phases of wound management

Clinical Evidence | Treatment of Diabetic Foot Ulcers (DFUs)

Week 0:
Wound measurement: 0.8 cm x 0.7 cm x 0.7 cm

Week 5:
Wound measurement: Wound size decreased with healthy granulating tissues

Week 8:
Wound measurement: 100% re-epithelialized

Closure of 6-month old wound in 56-year old patient

MKT.1421.01
References

5. Silverman, A. (2017). Use of an Ovine Collagen with an Intact Extracellular Matrix (CECM) and negative pressure wound therapy (NPWT) as part of the wound management plan following limb salvage surgical intervention in high risk diabetic foot ulcers. Symposium on Advanced Wound Care - Fall, Las Vegas, NA.

RX Only. Prior to use, be sure to read the entire Instructions for Use package insert supplied with the product.

For product questions, sampling needs, or detailed clinical questions concerning our products in the US, please call 1-860-337-7730

HCPCS are for reference only and subject to change.

Endoform® is a registered trademark of Aroa Biosurgery Limited.

Manufactured for:
AROA BIOSURGERY INC
340 Progress Drive, Manchester, CT 06042
1-860-337-7730
www.aroabio.com

©2018 Aroa Biosurgery Limited
MKT 1421.01 | May 2018
Use of Ovine-based Collagen Extracellular Matrix and Gentian Violet/Methylene Blue Antibacterial Foam Dressings to Help Improve Clinical Outcomes in Lower Extremity Wounds: A Retrospective Cohort Study.

Lulove EJ1

Abstract
Dressings that provide broad spectrum metalloprotease reduction along with inherent aspects of an extracellular matrix may contribute to improved wound healing outcomes and shorter treatment times.

OBJECTIVE: The author performed a retrospective case series analysis to determine the clinical outcomes of regular debridement with the use of ovine-based collagen extracellular matrix dressings and gentian violet/methylene blue polyurethane antibacterial foam dressings in treating 53 patients with 53 chronic lower extremity wounds (diabetic foot ulcers [DFUs], venous leg ulcers, and heel pressure ulcers).

MATERIALS AND METHODS: Patients were treated twice weekly in an outpatient clinic for the first 4 weeks and weekly thereafter until closure.

RESULTS: Average body mass index (BMI) for the study population was 28.3, and the average patient age was 75.9 years. Mean percent wound surface area reduction at 4, 8, and 12 weeks was 38.5%, 73.3%, and 91.3%, respectively. Average time to closure for all wounds was 10.6 weeks (range, 5-24 weeks). All wounds were 100% reepithelialized by week 20 except 1 DFU that reepithelialized at week 24. The average cost of care for a single wound episode (from presentation to closure) was $2749.49.

CONCLUSION: Results of this analysis showed that the healing of chronic wounds in this series could be achieved at a reasonable cost with regular debridement and a collagen matrix dressing regimen, even in patients of advanced age and above average BMI as well as in wounds that did not achieve > 40% wound surface area reduction at 4 weeks.

PMID: 28448264

[Indexed for MEDLINE]
Effect of Ovine-Based Collagen Extracellular Matrix Dressings on Outcomes in an Outpatient Wound Care Center.

Karen A. Fleck, MD • Teresa Reyes • Hunter C. Wishall
Baptist Medical Center Jacksonville – Center for Wound Care and Hyperbaric Medicine

Introduction:
- Cost efficiency in today’s stringent healthcare arena requires appropriate and judicious use of advanced therapies such as cellular and/or tissue based products (CTPs) for chronic wound management.
- Evidence has linked dermal graft (CTP) failure to elevated matrix metalloproteinase (MMP) levels in diabetic foot ulcers (DFUs), thus suggesting that protease balance for the purpose of wound bed preparation prior to CTP placement should be a clinical priority.
- An ovine-based collagen extracellular matrix (CECM) dressing,* available as a HCPCS A-code, with an intact extracellular matrix has demonstrated broad-spectrum MMP reduction. Results from several case series also suggest that CECM dressings may play a positive role in wound healing.4-6

Purpose:
To evaluate the change in CTP usage and wound healing outcomes in chronic wounds, specifically DFUs and VLUs, following the implementation of a CECM dressing as the first-line conventional wound treatment strategy in an outpatient wound care center.

Methodology:
- Records from two years (April 2015 to March 2017) were retrospectively reviewed to determine total number and healing rate of venous leg ulcers and diabetic foot ulcers that were treated by one physician investigator in an outpatient wound clinic.
- Calculations of the actual number of wounds treated by one physician investigator included only DFUs and VLUs since they made up the majority of wounds treated at the center. Additional wound types were treated during the study time frame, but for the sake of simplicity, they were not accounted for in this analysis.
- CECM dressing expenditures were estimated by multiplying the wound center’s total CECM dressing expenditures by the percentage of wounds treated by the single investigator compared to the wound center’s total number of wounds treated. The investigator’s actual CECM dressing unit usage was not recorded or available.

Results:
- A total of 109 chronic wounds (51 diabetic foot ulcers [DFUs] and 58 venous leg ulcers [VLUs]) were treated in Year 1 and 159 wounds (87 DFUs and 72 VLUs) were treated during Year 2.
- Average time to healing for DFUs was 29.5 days during Year 1 versus 21.0 days in Year 2. For VLUs, the average time to healing was 23.1 days in Year 1 and 27.1 days in Year 2.
- Forty-five of 51 (87.3%) DFUs healed in Year 1 and 83/87 (96.2%) of DFUs healed in Year 2, while 55/58 (95.8%) VLUs healed in Year 1 and 71/72 (98.8%) VLUs healed in Year 2.
- CTP unit usage decreased by 67.6% (34 units to 11 units) from Year 1 to Year 2. In regard to total expenditures, in Year 2 the CTP and CECM dressing expenditures totaled $23,482, which represented a 44.5% decrease from Year 1, despite an increase in number of wounds treated.

Conclusion:
Results of this analysis displayed a trend toward decreased expenditures, while maintaining similar healing rates for DFUs and VLUs with the use of a CECM dressing as the first-line chronic wound treatment protocol in a wound care center.

References:

*Endoform dermal template, Hollister Incorporated, Libertyville, IL
†Incorporation of CECM dressings as first-line conventional treatment strategy
‡Incorporation of CECM dressings as first-line conventional treatment strategy

Table 1. Demographics and outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Increase/Decrease from Year 1 to Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total chronic wounds treated (n)</td>
<td>109</td>
<td>159</td>
<td>45.9%</td>
</tr>
<tr>
<td>DFUs treated (n)</td>
<td>51</td>
<td>87</td>
<td>70.6%</td>
</tr>
<tr>
<td>VLUs treated (n)</td>
<td>58</td>
<td>72</td>
<td>24.1%</td>
</tr>
<tr>
<td>DFUs healed</td>
<td>45 (87.3%)</td>
<td>83 (96.2%)</td>
<td>10.2%</td>
</tr>
<tr>
<td>VLUs healed</td>
<td>55 (95.8%)</td>
<td>71 (98.8%)</td>
<td>0.2%</td>
</tr>
<tr>
<td>Average time to healing DFU (days)</td>
<td>29.5</td>
<td>21</td>
<td>-28.8%</td>
</tr>
<tr>
<td>Average time to healing VLU (days)</td>
<td>23.1</td>
<td>27.1</td>
<td>17.3%</td>
</tr>
<tr>
<td>CTP use (units)</td>
<td>34</td>
<td>11</td>
<td>-67.6%</td>
</tr>
<tr>
<td>CTP expenditure ($)</td>
<td>42,320</td>
<td>13,764</td>
<td>-67.5%</td>
</tr>
<tr>
<td>CECM expenditure ($)</td>
<td>0</td>
<td>9,718</td>
<td>--</td>
</tr>
<tr>
<td>Total CTP and CECM expenditures ($)</td>
<td>42,320</td>
<td>23,482</td>
<td>-44.5%</td>
</tr>
</tbody>
</table>

Figure 1. CTP and CECM expenditures: Year 1 vs Year 2

Figure 2. DFUs and VLUs treated and outcomes Year 1 vs Year 2

A healed wound was defined as 100% re-epithelialized with no drainage; total CTP and CECM dressing expenditures were dollar amounts invoiced to the institution for the dressings.
- Number of wounds treated, wound healing rate, and monthly expenditures for CTP and collagen dressings were compared between the 12 months prior to incorporation of CECM dressings (Year 1: April 1, 2015 - March 31, 2016) versus the 12 months after incorporation of CECM dressings (Year 2: April 1, 2016 - March 31, 2017).

Manufactured for AROA BIOSURGERY INC 340 Progress Drive, Manchester, CT 06042

Caution: Federal (USA) law restricts this device for sale by or on the order of a physician or licensed healthcare professional. Refer to Instrucion for Use for contraindications, warnings, precautions and possible complications.

Endoform® is a trademark of Aroa Biosurgery Limited. ©2018 Aroa Biosurgery Limited.

Fleck, K. A., T. Reyes and H. C. Wishall (2018). Effect of Ovine-Based Collagen Extracellular Matrix Dressings on Outcomes in an Outpatient Wound Care Center. Society for Advanced Wound Care • Spring, Charlotte, NC
Treating Diabetic Foot Ulcer Patients with an Ovine Collagen Extra Cellular Matrix Prior to Cellular Tissue Products.

Overland Park, KS

Jeffrey Roith, DPM Tina Neill, RN

Introduction:
Diabetic foot ulcers are the most expensive type of chronic ulcer to heal; almost twice the cost of other ulcers. Wound healing requires a balance of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Diabetic foot ulcers were found to have excess MMPs and decreased TIMPs which may contribute to diabetic ulcers not healing.

Purpose:
Utilizing an ovine collagen that has an intact extra cellular matrix (CECM) and broad spectrum MMP reducing ability before turning to cellular tissue products (CTP), may reduce the cost of diabetic foot ulcer treatment and in some cases may eliminate the need to use CTP.

Materials and Methods:
An elderly patient with multiple comorbidities and a previous diabetic foot ulcer, presented to the podiatrist office with a reopened right plantar ulcer. Ulcer was debrided and CECM treatment initiated while waiting for insurance approval of a cellular tissue product. CECM was applied according to instructions for use and was covered with a bordered foam dressing and changed every three days.

Results:
Wound was debrided at the first visit. Post debridement wound measured 0.7cm x 0.4cm x 0.1cm, CECM dressing was initiated. Wound size progressively decreased and achieved 100% epithelization in eight weeks, before CTP was approved.

Conclusions:
Ovine collagen is a wound dressing that has a native intact ECM and broad spectrum MMP reduction. Clinicians can use on day one usually without insurance approval to treat diabetic foot ulcers. CECM is classified with an “A” code under the surgical dressing policy and not a G code, therefore prescribing clinicians can order product for patients in all care settings. Initial treatment with CECM prepares the wound bed by decreasing MMPs while providing an ECM. Utilizing a CECM dressing before turning to more expensive options offers clinicians a cost effective alternative to treat diabetic foot ulcers.

References:
3. Endoform brochure, Hollister, Inc.
Objective: Demonstrate the use of ovine collagen extracellular matrix (ECM) and gentian violet/methylene blue (GV/MB) antibacterial foam dressings as an adjunct therapy in the treatment of wounds with exposed tendon and bone in diabetic feet.

Introduction: Diabetes has become more prevalent in our society, affecting 29.3 million Americans and more than 415 million people worldwide. If diabetes was a country, it would be the 3rd largest in the world. An estimated 15% of patients with diabetes will develop a lower extremity ulcer during the course of their disease. Foot ulcerations are the precursor to many lower leg amputations in persons with diabetes. This is a large concern in the care of the diabetic. The field of wound care is ever expanding with many advances in technology. Advanced modalities such as skin substitutes, biologic wound products and growth factors help facilitate healing. There are other wound care dressings, such as CECM with an extracellular matrix (ECM), that help promote tissue granulation and provide a temporary scaffold to help cells migrate, leading to tissue epithelialization for final wound closure. GV/MB antibacterial foam dressings may support autolytic debridement. The broad-spectrum antibacterial activity helps provide bioburden management and the dressing helps maintain moisture balance. Tendon and/or bone exposure in a wound increases the complexity and provides challenges in healing the wound. These severe wounds may increase the likelihood of amputation, therefore requiring the need for aggressive and advanced wound care.

Methods: These cases involve high risk diabetic patients with diabetic foot ulcers (DFUs) that were Wagner 3 or greater, with tendons and/or bone exposed. The wounds were surgically debrided, patients placed on IV antibiotics, and advanced wound care modalities such as hyperbaric oxygen therapy (HBOT) were used, in conjunction with CECM to prepare the wound bed for more advanced modalities. GV/MB polyurethane (PU)** antibacterial foam dressing was used to support autolytic debridement and reduction of bioburden. GV/MB polyurethane (PU)** antibacterial foam dressing was also used depending on exudate level of wound. CECM was used prior to skin graft placement and again two weeks after skin graft to complete healing. Dressings were removed prior to HBOT weekly therapy.

Conclusion: In the cases provided, the combination of CECM and GV/MB antibacterial foam dressings were implemented throughout the entire course of this treatment. This form of treatment showed favorable results in preparation of these wounds with exposed tendon and/or bone. This wound care management approach in conjunction with other modalities, skin grafts and skin substitute application was also shown to be favorable.

Case Study 1

Patient: 60-year-old male presented with skin graft with exposed bone after a great toe amputation.

Past medical history:
- Diabetes, hypertension, gangrene

Initial Visit Wound measurement: 4.0 cm x 4.0 cm x 1.5 cm
Wound Description: Non-healing chronic full-thickness surgical wound with muscle and bone exposed, large amount of purulent drainage.

Week 2 Wound measurement: 2.0 cm x 2.0 cm x 0.5 cm
Wound Description: Wound has granulation tissue with little auto debrided suprapatellar bursa.
Wound Management: CECM applied to wound bed covered by GV/MB PU antibacterial foam dressing and HBOT.

Week 3 Wound measurement: 1.0 cm x 1.0 cm x 0.5 cm
Wound Description: Small granular area.
Wound Management: CECM applied to wound bed covered by GV/MB PU antibacterial foam dressing and HBOT.

Week 5 Wound measurement: 1.0 cm x 1.0 cm x 0.5 cm
Wound Description: Wound bed covered by GV/MB PU antibacterial foam dressing and HBOT.

Week 9 Wound measurement: 0.1 cm x 0.1 cm x 0.1 cm
Wound Description: No exudates and not tender to palpation.
Wound Management: No dressing applied.

Week 10 Wound measurement: 0.5 cm x 0.5 cm x 0.1 cm
Wound Description: No exudates and not tender to palpation.
Wound Management: Continued with previous protocol.

Week 14 Wound measurement: 0.2 cm x 0.2 cm x 0.1 cm
Wound Description: No exudates and not tender to palpation.
Wound Management: No dressing applied.

Week 21 Wound measurement: 0.0 cm x 0.0 cm x 0.0 cm
Wound Description: No exudates and not tender to palpation.
Wound Management: No dressing applied.

Case Study 2

Patient: 54-year-old male status post-amputation to the right 4th and 5th toes.

Past medical history:
- Type II diabetes, heart disease, hypertension, congestive heart failure

Initial Visit Wound measurement: 8.5 cm x 4.0 cm x 0.3 cm
Wound Description: Fibrotic tissue at the center of wound with tendons and bone exposed. X-rays are consistent with osteomyelitis. Patient refused below knee amputation.
Wound Management: Debridement, collagenase and HBOT.

Week 1 Wound measurement: 3.0 cm x 2.0 cm x 0.5 cm
Wound Description: Wound has granulation tissue with little auto debrided suprapatellar bursa.
Wound Management: Debridement, CECM applied to wound bed covered by GV/MB PU antibacterial foam dressing and HBOT.

Week 2 Wound measurement: 2.0 cm x 1.0 cm x 0.3 cm
Wound Description: Wound bed covered by GV/MB PU antibacterial foam dressing and HBOT.

Week 3 Wound measurement: 1.0 cm x 1.0 cm x 0.2 cm
Wound Description: No exudates and not tender to palpation.
Wound Management: No dressing applied.

Week 6 Wound measurement: 0.5 cm x 0.5 cm x 0.1 cm
Wound Description: No exudates and not tender to palpation.
Wound Management: No dressing applied.

Week 10 Wound measurement: 0.2 cm x 0.2 cm x 0.1 cm
Wound Description: No exudates and not tender to palpation.
Wound Management: No dressing applied.

Week 17 Wound measurement: 0.0 cm x 0.0 cm x 0.0 cm
Wound Description: No exudates and not tender to palpation.
Wound Management: No dressing applied.

Week 18 Wound measurement: 0.0 cm x 0.0 cm x 0.0 cm
Wound Description: No exudates and not tender to palpation.
Wound Management: No dressing applied.

Case Study 3

Patient: 44-year-old male right foot non-healing wound.

Past medical history:
- Type I diabetes, hypertension, end stage renal disease, hemodialysis

Week 1 Wound measurement: 12.0 cm x 6.5 cm x 0.3 cm
Wound Description: Fibrotic tissue at the center of wound with tendons and bone exposed. X-rays are consistent with osteomyelitis. Patient refused below knee amputation.
Wound Management: Debridement, collagenase and HBOT.

Week 3 Wound measurement: 9.0 cm x 4.0 cm x 0.2 cm
Wound Description: Wound has granulation tissue with little auto debrided suprapatellar bursa.
Wound Management: Debridement, CECM applied to wound bed covered by GV/MB PU antibacterial foam dressing and HBOT.

Week 6 Wound measurement: 7.0 cm x 3.5 cm x 0.2 cm
Wound Description: Wound bed covered by GV/MB PU antibacterial foam dressing and HBOT.

Week 9 Wound measurement: 5.0 cm x 2.0 cm x 0.2 cm
Wound Description: Wound bed covered by GV/MB PU antibacterial foam dressing and HBOT.

Week 12 Wound measurement: 3.0 cm x 1.0 cm x 0.3 cm
Wound Description: Wound bed covered by GV/MB PU antibacterial foam dressing and HBOT.

Week 15 Wound measurement: 0.5 cm x 0.5 cm x 0.1 cm
Wound Description: No exudates and not tender to palpation.
Wound Management: No dressing applied.

Week 18 Wound measurement: 0.0 cm x 0.0 cm x 0.0 cm
Wound Description: No exudates and not tender to palpation.
Wound Management: No dressing applied.
Use of an Ovine Collagen with an Intact Extracellular Matrix (CECM) and negative pressure wound therapy (NPWT) as part of the wound management plan following limb salvage surgical intervention in high risk diabetic foot ulcers.

Objective:
Demonstrate use of an Ovine Collagen with an Intact Extracellular Matrix (CECM)* and negative pressure wound therapy (NPWT) as part of the wound management plan following limb salvage surgical intervention in high risk diabetic foot ulcers.

Background:
Diabetes is a disease which is becoming more and more prevalent in our society. As a result, more patients are developing complex lower extremity deformities which could lead to ulcerations that often progress to infection. As medical professionals, it is important that we realize the limb threatening diabetic foot ulceration or infection as early as possible so that we can provide patients with the urgent and aggressive wound care necessary for limb salvage. Patients who suffer a limb loss are more likely to suffer contralateral limb loss or even loss of life within the next few years.

Case Descriptions:
These four cases involve high risk diabetic patients who were treated with surgical intervention. As a part of post-operative wound management, CECM and NPWT were utilized. CECM was applied to the wound bed, covered with a contact layer dressing,** and then a NPWT dressing was applied. Dressings were changed two to three times a week per instructions for use.

Conclusion:
In these cases, the use of CECM and NPWT as part of the wound management plan following limb salvage surgical intervention has assisted in the task of saving these limbs.

*Endoform is a trademark of Aroa Biosurgery Limited.

Adam Silverman, DPM
Silverman Podiatry P.A., Baltimore, MD

Case Study 1: Left Hallux Amputation
Patient: 65 year-old, Diabetes, neuropathy, smoker, chronic DFU on bilateral great toes with osteomyelitis

Past medical history:
- Bilateral amputation of Hallux, 1 week later the patient developed post-op infection on left foot and went back to IR for debridement and partial 1st metatarsal amputation

Week 1
- Wound management: Dressing change w/ CECM
- Wound size: 6.0 cm x 4.0 cm x 0.8 cm

Week 2
- Wound management: Post-op Care
- Wound size: 5.0 cm x 3.0 cm x 0.8 cm

Week 3
- Wound description: Healthy granulation tissue, contact layer dressing
- Wound size: 4.0 cm x 2.0 cm x 0.7 cm

Week 4
- Wound description: CECM was seen in wound bed
- Wound measurement: 3.0 cm x 1.0 cm x 0.5 cm

Week 5
- Wound description: CECM can be seen in wound bed
- Wound measurement: 1.5 cm x 1.0 cm x 0.2 cm

Week 6
- Wound management: Post-op Care
- Wound size: 2.5 cm x 1.5 cm x 0.6 cm

Week 7
- Wound management: Post-op Care
- Wound size: 2.0 cm x 1.5 cm x 0.5 cm

Final wound:
- Wound closure
- Wound size: 1.0 cm x 1.0 cm x 0.5 cm

Conclusion:
These four cases involve high risk diabetic patients who were treated with surgical intervention. As a part of post-operative wound management, CECM and NPWT were utilized. CECM was applied to the wound bed, covered with a contact layer dressing,** and then a NPWT dressing was applied. Dressings were changed two to three times a week per instructions for use.

Case Study 2: Diabetic Foot Ulcer - Wet Gangrene
Patient: 70 year-old female

Past medical history:
- Diabetes, peripheral neuropathy, peripheral arterial disease, hypertension, end-stage renal disease and on hemodialysis

Week 1
- Wound management: NPWT
- Wound size: 2.1 cm x 7.5 cm x 0.1 cm

Week 2
- Wound management: NPWT discontinued. CECM, contact layer dressing, and multi-layer compression wrap initiated
- Wound size: 1.0 cm x 0.4 cm x 0.2 cm

Week 3
- Wound description: Increased granulation tissue, no tendon exposed, no pain or signs of infection, less drainage and no maceration
- Wound size: 0.6 cm x 0.3 cm x 0.5 cm

Week 5
- Wound description: Antimicrobial packing daily and oral antibiotics
- Wound measurement: 2.0 cm x 1.0 cm x 0.3 cm

Week 6
- Wound management: CECM can be seen in wound bed
- Wound measurement: 1.5 cm x 1.0 cm x 0.2 cm

Week 7
- Wound management: Post-op Care
- Wound size: 1.5 cm x 1.0 cm x 0.5 cm

Week 8
- Wound description: Increased granulation tissue, no tendon exposed, in part or sign of infection, less drainage and no maceration
- Wound measurement: 1.0 cm x 0.8 cm x 2.1 cm

Week 9
- Wound management: Post-op Care
- Wound size: 0.6 cm x 0.3 cm x 0.5 cm

Week 10
- Wound management: Post-op Care
- Wound size: 0.3 cm x 0.2 cm x 0.3 cm

Week 11
- Wound management: Post-op Care
- Wound size: 0.3 cm x 0.2 cm x 0.3 cm

Final wound:
- Wound closure
- Wound size: 0.7 cm x 0.7 cm x 0.1 cm

Conclusion:
In these cases, the use of CECM and NPWT as part of the wound management plan following limb salvage surgical intervention has assisted in the task of saving these limbs.
Introduction:
The use of negative pressure wound therapy dressings (NPWT) on acute and chronic foot wounds is not only well established, it has become a modern paradigm in the treatment of difficult-to-treat, pervasive wounds. The role of NPWT in promoting healing is based on a compendium of effects included induction of granulation tissue, removal of exudates, decreasing bioburden and maintaining a hydrated healing environment. Additionally, the application of a collagen dressing over chronic wounds has shown an overall decrease in wound surface in a case series of diabetic foot ulcers. A class of several zinc-containing serine proteases including interstitial collagenases, gelatinases, and stromelysins collectively are known as the matrix metalloproteinases (MMPs). MMP levels have been shown to be markedly elevated in chronic wounds among a plethora of other pathologic conditions. Here we present ten cases where NPWT was combined in conjunction with ovine collagen extracellular matrix dressing (CECM) with an overall difference in time to wound closure compared to a retrospective control group in which this dual therapy was not used.

Materials and Methods:
A prospective case-control study was initiated after approval from the institutional review board. Patient selection and enrollment was non-randomized and continuous until the treatment group of ten patients was filled, with cases of NPWT paired with CECM. The control group data was constructed utilizing a retrospective analysis of the last ten patients previously treated with NPWT alone. The goal of the study was to evaluate and compare the overall time to wound closure of both groups.

Results:
The results demonstrated in chronic diabetic foot ulceration an average time to closure of 5.5 weeks in the treatment group using the CECM dressing and 7 weeks in the control group. This shows a mean difference of 10 days in time to wound closure when CECM as added to the regimen with NPWT. There were no adverse events reported.

Conclusion:
In this case series, when compared to NPWT alone, the addition of CECM to NPWT has shown a difference in time to wound closure in instances of long-standing diabetic foot ulcers.

Case Study 1
Diabetic foot 3 weeks status post debridement for infection of left foot
Past medical history:
• Diabetes mellitus, hypertension, obesity, chronic kidney disease-Stage 3
Wound history:
• 3 weeks status post excisional debridement of infected dorsal medial foot wound that began as hallmark ulceration and tunneled into the medial mid-foot along the first ray
Previous treatment:
• Sharp debridement, wet to dry dressings, double antibiotic ointment, hydrogel, silver alginite dressing
Current treatment:
• Weekly debridement with application of CECM and NPWT

Case Study 2
Right diabetic foot ulcer
Past medical history:
• Diabetes mellitus, hypertension, obesity, hypothyroidism, fibromyalgia, Charcot neuroarthropathy
Wound history:
• 3 month history of chronic, recurrent plantar ulcer at greater tarsal fat secondary to Charcot collapse
Previous treatment:
• Curettage, wet to dry dressing, silver foam dressing, medical grade honey products, and off-loading boot
Current treatment:
• Weekly debridement with application of CECM and NPWT

REFERENCES

Appulse

Vidovic, G. and P. Sykes (2016). The use of an ovine collagen extracellular matrix dressing in conjunction with negative pressure wound therapy in the management of chronic diabetic foot ulcers. Symposium on Advanced Wound Care - Fall, Los Vegas, NA

Caution: Federal (USA) law restricts this device for sale by or on the order of a physician or licensed healthcare professional. Refer to Instruction for Use for contraindications, warnings, precautions and possible complications.

Endoform® is a trademark of Aroa Biosurgery Limited.

Manufactured for:
AROA BIOSURGERY
340 Progress Drive, Manchester, CT 06042
1-860-337-7750

www.aroabio.com
Innovative Dressing Option: Use of a collagen dermal template with extracellular matrix (ECM)* in the management of lower extremity wounds

Kathy Wright, RN, CWOCN-AP, ACHRN,
Debby Hastings, RN,
Wendy Dukes, RN,
Dr. Khalil Gorgui, M.D. Nanticoke Wound Care and Hyperbaric Center

Introduction:
With the growing arsenal of advanced wound healing products, clinicians are challenged to select the best treatment option. Chronic wounds often present with high levels of a variety of matrix metalloproteinases (MMPs) which has been shown to result in delayed wound healing.1,2 In excess, these proteases degrade the viable structures, including the extracellular matrix. This may result in delays in the use of optimal wound therapies which may extend the time to heal and may contribute to the development of further complications. One purpose of using a collagen dermal template with extracellular matrix (ECM)* is to reduce the activity of a broad spectrum of MMPs and provide an extracellular matrix to help support the structure of the wound.2

Method:
Patients presented at an outpatient wound healing center with lower extremity wounds consisting of a variety of etiologies and had failed to progress over a period of months, despite utilization of a number of advanced topical treatments. Use of a collagen dermal template with ECM* was initiated. The collagen dermal template with ECM* was applied by treating physician at the wound healing center as deemed necessary. Due to socio-economic circumstances, the patients’ return-to-clinic visits were sporadic. Therefore the collagen dermal template with ECM* application was restricted by the patients’ ability to return to the wound healing center. Home care services were necessary in between clinic visits. Wounds were assessed and documented on a weekly basis for measurement of size, pain, progression to healing, and granulating wound base.

Outcome:
Clinicians observed consistent progress toward wound closure with the use of the collagen dermal template with ECM* based on an increase in granulation tissue formation in the wound bed as well as reductions in wound size through wound measurement tracking. Patients also reported a reduction in pain.

Conclusion:
Collagen dermal template with ECM* dressings are a valuable addition to the advanced wound product arsenal. In this case series, the chronic wounds exhibiting delayed wound healing advanced to wound closure while utilizing this treatment modality. The use of this option of a collagen dermal template with ECM* may have helped optimize the wound healing environment of lower extremity wounds consisting of a variety of etiologies. When considering the chronic wound environment, this modality may be considered as a first choice dressing for the progression toward healing the chronic wounds we treat.
Past medical history includes: Peripheral Arterial Disease (PAD), Type II Diabetes Mellitus with sensory neuropathy, and left trans-metatarsal amputation.

Past medical history includes: Type II Diabetes Mellitus, hypertension, venous insufficiency, and gout.

Diagnostics performed at initial visit: Ankle-Brachial Indices (ABI) with arterial dopplers of bilateral lower extremities... with normal limits to extremity noted. Venous dopplers reflected mild greater saphenous reflux on left lower extremity.

Case Study 1 - Right dorsal foot wound
82-year-old who presented to the wound clinic with a 6-month-old, non-healing wound to the left medial ankle.

Peripheral Vascular Disease (PVD), right below knee amputation, Coronary Artery Disease (CAD), Coronary bypass graft, and hypertension (HTN).

Previous wound care treatment: Split-thickness skin graft, topical treatment included silver foam dressing, and honey hydrocolloid dressing.

Day 1: Onset of Care
Day 2: Wound description-treatment: Patient insensate with wound pain rated as a zero. Wound had 50% yellow slough, 50% pink granulation tissue, and no sinus tract or undermining noted. Wound significantly reduced from previous dressing change. Cleansed wound with normal saline solution, applied collagen dermal template with ECM*, and a border foam dressing to cover.

Day 21: Wound healed

Case Study 2 - Left heel ulcer
65-year-old resident of long-term care facility presents with a one month old ulcer to the left heel.

Past medical history includes: Peripheral Vascular Disease (PVD), right below knee amputation, Coronary Artery Disease (CAD), Coronary bypass graft, and hypertension (HTN).

Previous wound care treatment: Various silver foam dressings, honey hydrocolloid dressings, and multilayer compression wraps.

Day 1: Wound prior to first collagen dermal template with ECM* application.

Wound Dimensions: 3.0 cm X 1.2 cm X 0.2 cm

Wound description-treatment: Wound previously treated with silver hydrogel and other collagen dressings.

Day 2: Wound after 9 days of initial collagen dermal template with ECM* application.

Wound Dimensions: 0.7 cm X 0.4 cm X 0.1 cm

Wound description-treatment: Minimal amount of clear sero-sanguineous drainage with no odor noted. Patient insensate with wound pain rated as a zero. Wound had 10% pink granulation tissue with 75% brown slough upon assessment. Cleansed wound with normal saline solution, applied collagen dermal template with ECM*, foam dressing, and multilayer compression wrap applied.

Day 21: Wound healed

Case Study 3 - Left medial ankle wound
82-year-old who presented to the wound clinic with a 6-month-old, non-healing wound to the left medial ankle.

Past medical history includes: Type II Diabetes Mellitus, hypertension, venous insufficiency, and gout.

Previous wound care treatment: Various silver foam dressings, honey hydrocolloid dressings, and multilayer compression wraps.

Diagnosis performed at initial visit: Ankle-Brachial Indices (ABI) with arterial dopplers of bilateral lower extremities were completed with normal limits to extremity noted. Venous dopplers reflected mild greater saphenous reflux on left lower extremity.

Day 1: Wound prior to first collagen dermal template with ECM* application.

Wound Dimensions: 2.0 cm X 0.6 cm X 0.1 cm

Wound description-treatment: Minimal amount of clear sero-sanguineous drainage with no odor, no complaint of pain, or signs of infection noted. Wound bed had 10% pink granulation tissue with 75% brown slough upon assessment. Cleansed wound with normal saline solution, applied collagen dermal template with ECM*, foam dressing, and multilayer compression wrap applied.

Day 21: Wound healed

REFERENCES

*Endoforum® dermal template, AROA BIOSURGERY
Managing Diabetic Foot Ulcers Using a Three Pronged Approach: V.I.P.

Jeffrey Roith, DPM
Overland Park, KS

Introduction:
Diabetic foot ulcers (DFUs) are a complication of diabetes that can be costly to treat, reduce quality of life, may lead to amputation, and even death. An excess of matrix metalloproteinases (MMPs) and decreased tissue inhibitors of metalloproteinases (TIMPs) may contribute to diabetic ulcers not healing. Vascular management (V), infection management and prevention (I), and pressure relief (P) are essential to DFU healing. Total contact casting is the gold standard for DFU management. However, off-loading alone will fail to present optimal outcomes if vascular disease or infection is not appropriately managed. Utilizing a total contact cast (TCC) system comprised of a clamshell cast with off-loading footplate* that includes products needed to address the V.I.P.s can be helpful to manage DFUs.

Method:
Three DFU patient’s wounds were managed using ovine collagen with an intact extra cellular matrix (CECM) ** as a primary dressing and a clamshell cast with off-loading footplate. Patients returned to the clinician’s office weekly for dressing changes and wound system changes.

Results:
All three patients had wound closure within 12 weeks and without infection. The TCC system comprised of a clamshell cast with off-loading footplate provided the needed solution to provide V.I.P. treatment to these DFU patients.

Case Study 1
Patient: 56 year-old.
Past medical history:
- Hypertension, chronic obstructive pulmonary disease, diabetes, peripheral vascular disease, peripheral neuropathy, Charcot foot. Recurrent wound for the last 2 years. Current wound is 6 months old.
Previous wound management:
- Cellular tissue product, collagen with soaked regranulated cellullose, debridement, and foam dressings were used for 21 weeks.
- CECM covered with G/MI PU antibacterial foam were applied in an off-loading diabetic shoe for 3 weeks. Despite advanced wound dressings and diabetic shoe, wound did not progress.
Wound management:
- CECM covered with G/MI PU antibacterial foam were applied to the wound and secured with tape.
- Applied TCC system comprised of a clamshell cast with off-loading footplate.
- Changed weekly for a total of 8 applications.

Week 0 Wound measurement: Post-debridement 0.8 cm x 0.7 cm x 0.7 cm
Week 1 Wound measurement: 0.6 cm x 0.5 cm x 0.3 cm
Week 2 Wound measurement: Pre-debridement 0.5 cm x 0.4 cm x 0.3 cm
No debridement performed
Week 3 Wound measurement: Post-debridement 1.0 cm x 0.6 cm x 0.3 cm
Week 4 Wound measurement: Post-debridement 0.7 cm x 0.6 cm x 0.1 cm
Week 5 Wound measurement: Wound Closure

Case Study 2
Patient: 48 year-old.
Past medical history:
- Diabetes, Charcot deformity.
Age of wound:
- 3 weeks.
Previous wound management:
- Antibiotic ointment and off-loading with post-operative shoe.
Wound management:
- CECM covered with G/MI PU antibacterial foam were applied to the wound and secured with tape.
- Applied TCC system comprised of a clamshell cast with off-loading footplate.

Week 0 Wound measurement: Post-debridement 2.4 cm x 1.4 cm x 0.3 cm
Week 1 Wound measurement: Post-debridement 1.0 cm x 0.8 cm x 0.2 cm
Week 2 Wound measurement: Post-debridement 0.5 cm x 0.4 cm x 0.2 cm
No debridement performed
Week 3 Wound measurement: Pre-debridement 0.3 cm x 0.3 cm
Week 4 Wound measurement: Post-debridement 0.3 cm x 0.2 cm x 0.3 cm
Week 5 Wound measurement: Wound Closure

Case Study 3
Patient: 69 year-old who was initially seen prior for idiopathic peripheral neuropathy and a bilateral charcot deformity with a wound on the plantar aspect of the right foot.
Past medical history:
- Hypertension, Dysplasia, Coronary artery bypass graft x 3, Atrial Hrillation.
Previous wound management:
- Patient was treated conservatively for 8 weeks and refused casting until the wound failed to respond and close.
Wound management:
- CECM covered with G/MI PU antibacterial foam were applied to the wound and secured with tape.
- Applied TCC system comprised of a clamshell cast with off-loading footplate.
- Wound closure was achieved in 6 weeks after adding these to the overall wound management plan.

Week 0 Wound measurement: 1.0 cm x 1.4 cm x 0.3 cm
Week 2 Wound measurement: 0.8 cm x 0.5 cm x 0.3 cm
Week 3 Wound measurement: Post-debridement 1.0 cm x 0.8 cm x 0.2 cm
Week 4 Wound measurement: 0.7 cm x 0.6 cm x 0.1 cm
Week 5 Wound measurement: Wound Closure

Conclusion:
Without proper pressure relief, successful healing will be unlikely even when using advanced therapeutics. In these cases, the addition of the TCC system comprised of a clamshell cast with off-loading footplate, which includes CECM and G/MI PU antibacterial foam dressings, helps the wounds get back on a healing trajectory.

Results:
- FastCast OLS, Distributed by Hollister Incorporated.
- Endoform dermal template, Distributed by Hollister Incorporated.
- Hydrofera Blue Ready foam, Distribute by Hollister Incorporated.

Financial Disclosure: J. Roith received an honorarium from Hollister Incorporated.

REFERENCES

* Endoform
** Endoform dermal template, Distributed by Hollister Incorporated.
*** Hydrofera Blue Ready foam, Distributed by Hollister Incorporated.

Financial Disclosure: J. Roith received an honorarium from Hollister Incorporated.
Use of ovine collagen extracellular matrix (CECM)* dressing and gentian violet and methylene blue (GV/MB) antibacterial foam** dressing in the management of diabetic foot ulcers

- Dr. Igor Zilberman, DPM, Dr. Nooshin Zolfaghari, DPM, CWS, MPH, South Florida Lower Extremity Center Hollywood, FL

** apprentice of ovine collagen extracellular matrix (CECM)* dressing in the management of diabetic foot ulcers

** Dr. Igor Zilberman, DPM, Dr. Nooshin Zolfaghari, DPM, CWS, MPH, South Florida Lower Extremity Center Hollywood, FL

INTRODUCTION:

Diabetic foot ulcers (DFU) are estimated to affect ~15% of all diabetic individuals during their lifetime. The management and treatment of DFU’s can be costly and complex. In 2008, the mean reimbursement for all Medicare related services for DFU’s was $35,100.** DFU’s also have a negative effect in the quality of life on diabetic patients as a result of decreased mobility.* Early intervention is important to prevent further complications and improve quality of life of patients with DFU’s. Chronic wounds represent a failure in the normally ordered sequence of wound healing. Changes in local pH, temperature, and amounts of chemical reactants are all factors influencing wound healing. The three main components of local wound management include: debridement, infection/inflammation, and moisture balance. Bioburden, or critical bacterial colonization, leads to persistently high levels of matrix metalloproteinases (MMP) being released from inflammatory cells that digest the normal collagen scaffold in the base of a healing wound. Using advanced wound care products may assist in achieving wound healing in a timely manner.*

OBJECTIVES:

To describe the use of CECM, and in combination with gentian violet and methylene blue (GV/MB) antibacterial foam,** to manage MMPs and bioburden in DFU.

METHODS AND MATERIALS:

Patients were selected with wounds of diabetic origins. The CECM and GV/MB antibacterial dressings were changed according to product instructions for use. Assessments and measurements were performed by the clinician weekly.

CONCLUSION:

The use of the dressings in this case series were helpful in the management of these complex wounds. Both the CECM and GV/MB antibacterial foam dressings may have been instrumental in MMP and bioburden reduction with complete resolution of wounds without complications. Overall patient satisfaction and compliance were also observed by the clinician.

Case Study 1 - Diabetic Foot Ulcer - Right Plantar 5th metatarsal

Patient: 70 year-old male with one week old diabetic foot ulcer.

Past medical history:

- Diabetes neuropathy, hypertension.

Previous treatment:

- None.

Wound treatment:

- Sharp debridement.

- CECM, non-adherent contact layer, GV/MB antibacterial foam dressing secured with rolled gauze. Dressing changed weekly.

- Post-op shoe with accommodative padding.

Initial wound measurement: 1.0 cm x 0.5 cm x 0.2 cm

Week 1 Wound measurement: 1.0 cm x 0.5 cm x 0.3 cm

Week 7 Wound measurement: 0.5 cm x 0.4 cm x 0.3 cm

Week 9 Wound measurement: 0.3 cm x 0.2 cm x 0.2 cm

Week 13 Wound measurement: 0.3 cm x 0.2 cm x 0.3 cm

Week 15 Wound measurement: 0.5 cm x 0.5 cm x 0.3 cm

Week 17 Wound measurement: 0.3 cm x 0.2 cm x 0.3 cm

Week 19 Wound measurement: 0.3 cm x 0.2 cm x 0.3 cm

Week 21 Wound measurement: Wound healed

Wound Description:

- Red granulating tissue with tendon visible

- Wound to base of tendon

- Granulating tissues with epithelialization on wound edges

Zilberman, I. and N. Zolfaghari (2014). Use of ovine collagen extracellular matrix (CECM) dressing and gentian violet and methylene blue (GV/MB) antimicrobial foam dressing in the management of diabetic foot ulcers. The Symposium on Advanced Wound Care - Fall Las Vegas, NA

Caution: Federal (USA) law restricts this device for sale by or on the order of a physician or licensed healthcare professional. Refer to Instruction for Use for contraindications, warnings, precautions and possible complications.

Endoform® is a trademark of AROA Biosurgery Limited.
Innovative solutions in the management of wounds with exposed tendons utilizing ovine collagen extracellular matrix and gentian violet and methylene blue antibacterial foams.

Dr. Igor Zilberman, DPM • Nooshin Zolfaghari DPM, CWS, MPH, South Florida Lower Extremity Center, Hollywood, FL

INTRODUCTION:

Tendons are anatomical structures that connect muscle to bone. They are composed of parallel bundles of collagen fiber and often appear as striated white or cream yellow structures in wound beds.1 Tendons are nourished by blood vessels and by diffusion of nutrients from synovial fluid.2 Because nourishment is disrupted when the tendon is exposed, meticulous care must be provided to prevent infection and desiccation. Either of these two may result in loss of tendon viability.3

Tendons may be exposed in trauma wounds, stage IV pressure wounds, diabetic wounds, and contaminated or infected surgical wounds.4 Chronic wounds represent a failure in the normal order and sequence of wound healing. Changes in local pH, temperature, and amounts of chemical reactants are all factors influencing wound healing.

The three main components of local wound management include debridement, infection/inflammation, and moisture balance. Bioburden, or critical bacterial colonization, leads to persistently high levels of matrix metalloproteinases (MMP) being released from inflammatory cells that digest the normal collagen scaffold in the base of a healing wound.5 Addressing these key barriers to wound healing with use of advanced wound care products may assist in achieving tendon coverage and promote wound healing.

OBJECTIVE:

To describe the use of an ovine collagen with an intact ECM* (ECM) and gentian violet and methylene blue (GV/MB) polyurethane (PU) and/or polyvinyl alcohol (PVA) antibacterial foams** in wounds with exposed tendons.

METHODS AND MATERIALS:

Patients were selected with wounds containing either partial or complete tendon exposure. The CECM dressings and GV/MB foams were changed according to product instructions. Assessments and measurements were performed by the clinician weekly.

CONCLUSION:

The use of the CECM dressing with GV/MB antibacterial foams in this case series were helpful in the management of these complex wounds. Complete tendon coverage and resolution of wounds were without complication.

Case Study 1 - Surgical wound - Right Dorsal Foot

Patient: 41-year-old male presented to emergency room with cellulitis, swelling, and a blister on right hallux and metatarsal. Abscess was noted on the right lateral dorsal foot. MR imaging revealed osteomyelitis.

Past medical history:

- Hypertension, diabetes.

Wound history:

- First ray resection on right foot with debridement of abscess on right dorsal foot. N antibiotics. Hospitalized for 115 visits.

Previous treatment:

- Negative pressure wound therapy (NPWT) alone during hospital stay. CECM hydrogel, covered with non-adherent contact layer and NPWT for 5 weeks.

Treatment:

- NPWT discontinued. Treatment changed to CECM covered with MIV/PVA antibacterial foam covered with dry gauze and secured with gauze wrap. Dressings changed every other day.

Week 0 Wound measurement: 8.0 cm x 3.0 cm x 0.2 cm

Week 1 Wound measurement: 7.5 cm x 3.0 cm x 0.2 cm

Week 2 Wound measurement: 7.0 cm x 2.5 cm x 0.2 cm

Week 3 Wound measurement: 6.7 cm x 2.0 cm x 0.2 cm

Week 4 Wound measurement: 6.5 cm x 1.5 cm x 0.2 cm

Week 5 Wound measurement: 6.3 cm x 1.0 cm x 0.2 cm

Week 6 Wound measurement: 6.0 cm x 0.7 cm x 0.3 cm

Week 7 Wound measurement: 5.5 cm x 0.5 cm x 0.3 cm

Week 8 Wound measurement: 5.0 cm x 0.3 cm x 0.2 cm

Week 9 Wound measurement: 4.6 cm x 0.4 cm x 0.2 cm

Week 10 Wound measurement: 4.2 cm x 0.2 cm x 0.2 cm

Wound Description:

- Week 0: Granulating tissue with external tendon exposed.
- Week 1: 100% granulating tissue. Tendon covered.
- Week 2: 100% granulating tissue. Tendon covered.
- Week 3: 100% granulating tissue. Tendon covered.
- Week 4: 100% granulating tissue. Tendon covered.
- Week 5: 100% granulating tissue. Tendon covered.
- Week 6: 100% granulating tissue. Tendon covered.
- Week 7: 100% granulating tissue. Tendon covered.
- Week 8: 100% granulating tissue. Tendon covered.
- Week 9: 100% granulating tissue. Tendon covered.
- Week 10: 100% granulating tissue. Tendon covered.

Case Study 2 - Dehisced surgical wound - 2nd right toe

Patient: 57-year-old female presented to clinic with dehisced surgical incision on 2nd right toe osteomyelitis.

Past medical history:

- Diabetic with abscess on left first metatarsal.

Wound history:

- 100% granulating wound bed with smooth flat wound edges. No tendons exposed.

Week 0 Wound measurement: 5.0 cm x 3.0 cm x 0.5 cm

Week 1 Wound measurement: 4.5 cm x 1.5 cm x 0.5 cm

Week 2 Wound measurement: 3.5 cm x 1.0 cm x 0.5 cm

Week 3 Wound measurement: 2.5 cm x 0.5 cm x 0.3 cm

Week 4 Wound measurement: 1.5 cm x 0.7 cm x 0.2 cm

Week 5 Wound measurement: 1.0 cm x 0.5 cm x 0.2 cm

Week 6 Wound measurement: 0.5 cm x 0.3 cm x 0.2 cm

Wound Description:

- Week 0: Granulating tissue with external tendon exposed.
- Week 1: 100% granulating tissue. Tendon covered.
- Week 2: 100% granulating tissue. Tendon covered.
- Week 3: 100% granulating tissue. Tendon covered.
- Week 4: 100% granulating tissue. Tendon covered.
- Week 5: 100% granulating tissue. Tendon covered.
- Week 6: 100% granulating tissue. Tendon covered.

Case Study 3 - Pressure ulcer - Achilles

Patient: 80-year-old male living in a skilled nursing facility, bed bound with 3 month old pressure ulcer to the achilles. Past medical history:

- Peripheral vascular disease, congestive heart failure.

Wound history:

- 100% re-epithelialized.

Week 0 Wound measurement: 9.8 cm x 7.0 cm x 0.5 cm

Week 1 Wound measurement: 8.5 cm x 5.0 cm x 0.5 cm

Week 2 Wound measurement: 7.5 cm x 3.5 cm x 0.5 cm

Week 3 Wound measurement: 6.5 cm x 2.5 cm x 0.5 cm

Week 4 Wound measurement: 5.5 cm x 1.5 cm x 0.5 cm

Week 5 Wound measurement: 4.5 cm x 0.5 cm x 0.3 cm

Week 6 Wound measurement: 3.5 cm x 0.3 cm x 0.2 cm

Week 7 Wound measurement: 2.5 cm x 0.2 cm x 0.2 cm

Wound Description:

- Week 0: Granulating tissue with external tendon exposed.
- Week 1: 100% granulating tissue. Tendon covered.
- Week 2: 100% granulating tissue. Tendon covered.
- Week 3: 100% granulating tissue. Tendon covered.
- Week 4: 100% granulating tissue. Tendon covered.
- Week 5: 100% granulating tissue. Tendon covered.
- Week 6: 100% granulating tissue. Tendon covered.
- Week 7: 100% granulating tissue. Tendon covered.

Case Study 4 - Diabetic foot ulcer - Left First Metatarsal

Patient: 51-year-old male with diabetic foot ulcer. Past medical history:

- Diabetic with abscess on left first metatarsal.

Wound history:

- 100% re-epithelialized.

Week 0 Wound measurement: 8.0 cm x 4.0 cm x 0.3 cm

Week 1 Wound measurement: 7.5 cm x 3.0 cm x 0.2 cm

Week 2 Wound measurement: 7.0 cm x 2.5 cm x 0.2 cm

Week 3 Wound measurement: 6.5 cm x 2.0 cm x 0.2 cm

Week 4 Wound measurement: 6.0 cm x 1.5 cm x 0.2 cm

Wound Description:

- Week 0: Granulating tissue with external tendon exposed.
- Week 1: 100% re-epithelialized.
- Week 2: 100% re-epithelialized.
- Week 3: 100% re-epithelialized.
- Week 4: 100% re-epithelialized.

Zilberman, I. and N. Zolfaghari (2016). Innovative solutions in the management of wounds with exposed tendons utilizing ovine collagen extracellular matrix and gentian violet and methylene blue antibacterial foams. Symposium on Advanced Wound Care - Atlanta, GA

Caution: Federal (USA) law restricts this device for sale by or on the order of a physician or licensed healthcare professional. Refer to Instruction for Use for contraindications, warnings, precautions and possible complications.

Endoform® is a trademark of Aroa Biosurgery Limited.
Patient: 57 year-old male with diabetic foot ulcer

Past medical history:
• Acute abscess with seropurulent exudate on the dorsal foot

Previous Treatment:
• Incision and drainage of the abscess
• Systemic antibiotics for 2 weeks
• Negative pressure wound therapy (NPWT) with cellular tissue based product for 2 weeks
• CPT continued for another week post discontinuance of NPWT

Wound Treatment:
• Endoform dermal template, Restore contact layer FLEX,
• Hydrofera Blue classic foam, secured with stretch gauze.
• Unna boot applied. Dressings changed every 72 hours

One week post cellular tissue based product. CPT appears to be incorporating well.

Three weeks later, tendon is exposed. No signs of infection. CPT appears to not be incorporating well.

Week 0:
Endoform® dermal template added to treatment.
Endoform® dermal template applied over the remaining CPT, covered with Hydrofera Blue classic foam. Hydrofera Blue classic foam changed and Endoform® dermal template applied every 72 hours.

Week 4:
Wound decreased in size, wound bed has granulation tissue with tendon exposed. Wound edges are smooth and flattened with epithelial cells. Remnants of Endoform® dermal template (clear to light yellowish film) is observed in the wound bed on dressing change. Endoform® dermal template added to the wound and continued with same wound treatment.

Week 6:
Wound size continues to decrease. Red beefy granulation growing over the tendon.

Week 10:
Tendon completely covered and wound size significantly reduced.

Week 17:
Re-epithelialized.

Case provided by:
Eric Lullove, DPM CWS FACCWS, Medical Director, West Boca Center for Wound Healing, Boca Raton, Florida.
Patient: 51 year-old male with diabetic foot ulcer

Past medical history:

- Diabetic with abscess on left first metatarsal

Previous Treatment:

- Incision and drainage of abscess with debridement of necrotic tissues
- Systemic antibiotic for 2 weeks
- Wound dressings: Wet to dry dressings for 2 weeks

Wound Treatment:

- Endoform dermal template, Hydrofera Blue Ready foam secured with stretch gauze and elastic bandage. Dressings changed weekly.

Week 0:
Wound measurements: 8.5 cm x 4.0 cm x 0.5 cm
Wound description: 70% Red granulating tissues with 30% tendon exposed

Week 1:
Wound measurements: 8.5 cm x 3.5 cm x 0.5 cm
Wound description: 80% red granulating tissues with 20% tendon exposed

Week 2:
Week measurements: 8.5 cm x 3.5 cm x 0.2 cm
Wound description: Tendon continued to be covered with granulation tissue

Week 4:
Wound measurements: 8.0 cm x 3.0 cm x 0.2 cm
Wound description: 100% red granulating tissues. Tendon completely covered with granulation tissues

Week 8:
Wound measurements: 4.6 cm x 3.0 cm x 0.2 cm
Wound description: Wound continues to reduce in size

Week 10:
Wound description: Re-epithelialized

Case provided by:
Dr. Igor Zilberman DPM, South Florida Lower Extremity Center, 2699 Stirling Road, Hollywood, FL 33312.